- ullet C denotes the set of complex numbers.
- $\bullet \mathbb{R}$ denotes the set of real numbers.
- Q denotes the set of rational numbers.
- \bullet \mathbb{Z} denotes the set of integers.
- N denotes the set of positive integers.
 - **Q 1.** Let $f: \mathbb{R} \times [0,1] \to \mathbb{R}$ be a continuous function and $\{x_n\}$ a sequence of real numbers converging to x. Define

$$g_n(y) = f(x_n, y), \ 0 \le y \le 1,$$

 $g(y) = f(x, y), \ 0 \le y \le 1.$

Show that g_n converges to g uniformly on [0,1].

Q 2. Let f be a real valued continuous function on [-1,1] such that f(x) = f(-x) for all $x \in [-1,1]$. Show that for every $\epsilon > 0$ there is a polynomial p(x) with rational coefficients such that for every $x \in [-1,1]$,

$$|f(x) - p(x^2)| < \epsilon.$$

- **Q 3.** Show that every bijection $f: \mathbb{R} \to [0, \infty)$ has infinitely many points of discontinuity.
- **Q 4.** (a) Let f be an entire function such that $\lim_{|z|\to\infty}|f(z)|=\infty$. Prove that f is a polynomial.
 - (b) Let f be an entire function which is not a polynomial. Then prove that the image of the set $\{z \in \mathbb{C} : |z| > 1\}$ under f is dense in \mathbb{C} .
- **Q 5.** Let P(z) be a monic polynomial with complex coefficients with all roots distinct and in $\{z \in \mathbb{C} : \text{Im}(z) < 0\}$.
 - (a) Prove that the sum of all the residues of $\frac{P'}{P}$ is the degree of the polynomial P.
 - (b) Prove that P' has no real root.
- **Q 6.** Let A be a Lebesgue measurable subset of \mathbb{R} and $\lambda(A) = 1$, where λ is the Lebesgue measure on \mathbb{R} . Prove that there exists a Lebesgue measurable subset B of A such that $\lambda(B) = 1/2$.

Q 7. Let $p \ge 1$ and f be a Lebesgue measurable function on $\mathbb R$ such that $\int_{\mathbb R} |f(x)|^p dx < \infty$. Show that,

$$\int_{\mathbb{R}} |f(x)|^p dx = \int_0^\infty pt^{p-1} \lambda(\{x : |f(x)| > t\}) dt,$$

where λ denotes the Lebesgue measure.

Q 8. Let $\Omega \subset \mathbb{R}^n$ be an open set and $K \subset \Omega$ compact. Prove that there exists an r > 0 such that the set

$$\{y \in \mathbb{R}^n : ||y - x|| \le r \text{ for some } x \in K\}$$

is a compact subset of Ω .

- **Q 9.** Let \sim be an equivalence relation on a topological space X such that each equivalence class is connected and the quotient space X/\sim is connected. Show that X is connected.
- **Q 10.** Let C be a curve in \mathbb{R}^2 passing through (3,5) and L(x,y) denote the segment of the tangent line to C at (x,y) lying in the first quadrant. Assuming that each point (x,y) of C in the first quadrant is the midpoint of L(x,y), find the curve.

